

0040-4039(94)01663-1

Enantioselective Synthesis of 7-Cycloocten-l,3,5,6-tetraol Derivatives by Enzymatic Asymmetrization

Carl R. Johnson,* Lalgudi S. Harikrishnan and Adam Golebiowski Department of Chemistry, Wayne State University, Detroit, Michigan 48202-3489

Abstract: meso-Diol 4, derived from 1,5-cyclooctadiene, in the presence of *Pseudomonas cepacia* lipase in isopropenyl acetate, afforded enantiopure 5, an attractive intermediate for the synthesis of sugars and related compounds.

We are engaged in a program directed toward development of chemoenzymatic syntheses of polyhydroxylated natural products and related bioactive compounds.¹ Using enzymatic asymmetrization² and resolution³ methodologies we have transformed simple hydrocarbons (e.g., cyclopentadiene, benzene or cycloheptatriene) into enantiopure intermediates, which were further elaborated⁴ into various targets including sugars and related molecules (Scheme 1).5

1,5-Cyclooctadiene, a dimer of 1,3-butadiene and a readily available, inexpensive substance, appeared to be a logical substrate for progression of this strategy. We envisioned that the eight-membered ring intermediate 5 could be a useful starting material for the synthesis of higher sugars and other polyhydroxylated bioactive targets.

Monobromination of cyclooctadiene followed by *cis-dihydroxylation* gave acetonide 1 after acidcatalysed acetalization.⁶ Bis-elimination of HBr gave diene 2 (Scheme 2). Examination of molecular models (Figure 1) lead to the prediction that singlet oxygen addition to 2 from the face syn to the existing acetonide would be favored. The single peroxide diastereomer 3 formed on exposure of 2 to singlet oxygen 7 had the all *syn* stereochemistry of oxygen substituents in accord with our prediction (vide infra).

Zinc and acetic acid reduction of the peroxide 3 led to diol 4, which was treated with lipase from *Pseudomonas cepacia* (Amano P-30) in isopropenyl acetate at 50 ^oC for 4 days.⁸ Collection of the the enzyme by filtration and evaporation of solvent gave monoacetate 5 in 90% yield. Monacetate 5 was found to be >98% enantiopure by converting alcohol 5 into enone 6 which was analyzed using chiral HPLC.⁹ The absolute and relative stereochemistry of 5 was established by chemical correlation to 3*deoxy-D-ribo-hexitol* pentaacetate (9) (Scheme 3).

aReagents and conditions: (a) Br_2 , CHCl₃, $-78 \text{ }^{\circ}\text{C}$; (b) OsO₄-cat, NMO, THF, rt; (c) 2,2dimethoxypropane, p-TsOH-cat, rt; (d) DBU, toluene, reflux: (e) O_2 , TPP, hv, 10 °C, CHCl3:MeOH -3:1; (f) Zn(activated), HOAc, EtOAc; (g) isopropenyl acetate, *Pseudomonas cepacia* lipase (Amano P-30) 2 wt. equiv, 50 oc, 4 d

Figure 1. Transannular hydrogens shield approach of ${}^{1}O_{2}$ anti to acetonide of 2 (mimimized Chem $3D^{TM}$ structure shown).

Silylation of the free hydroxy of 5 with TBDPSCI followed by removal of the acetate with KOH/MeOH and PDC oxidation gave enone 7 in 50% yield. Enone 7 was quantitatively converted to the t-butyldimethylsilyloxy diene 8. Ozonolysis of 8 followed in sequence by reductive work-up (dimethyl sulfide), sodium borohydride reduction of the dialdehyde, acidic (1N HCI) removal of protective groups and peracetylation gave *(+)-3-deoxy-ribo-hexitol* pentatacetate (9). The spectral data for this compound was identical to that previously reported.¹⁰ The production of diastereomer 9 established the relative stereochemistry of the singlet oxygen addition product 3 and polyols 4 and 5 derivatives as having all syn oxygens.

The absolute stereochemistry was established by conversion of the prostaglandin presursor 10^{11} of known absolute stereochemistry to pentaacetate 9. α -lodination of enone 10,^{4a} followed by Luche reduction,¹² afforded alcohol 11 as a major product $(syn : anti; 8:1).$ ^{5c} One carbon homologation with carbon monoxide^{5c, 13} followed by reduction and selective silylation of the primary alcohol gave cyclopentenol 12. Ozonolysis of 12 followed by reductive work-up led to a keto-aldehyde, which was immediately subjected to *anti-selective* reduction with sodium triacetoxyborohydride *(anti : syn;* >20:1). 14 Acidic removal of the silyl groups and peracetylation again afforded (+)-pentaacetate 9, establishing the absolute confirguration of compounds 5 - 9 as shown.

aReagents and conditions: (a) TBDPSCI, imidazole, DMF, RT; (b) KOH, MeOH; (c) PDC, CH2Cl2, molecular sieves 4 Å; (d) TBSOTf, Et₃N, Et₂O, RT; (e) O₃, MeOH, -78 °C then DMS, 20 °C; (f) NaBH₄, MeOH; (g) 1N HCl, MeOH, rt; (h) Ac₂O, pyridine, DMAP, rt; (i) I_2 , (1.8 eq.), pyridine/CCl₄; (j) NaBH₄, CeCl₃, MeOH, -78 ^oC; (k) CO (1 am.), Bu₃SnH, Pd(Ph₃P)₄ 5 mol%, THF; then NaBH₄, CeCl₃.7H₂O, MeOH, -78 ^oC: (1) TBSCl, Et₃N, CH₂Cl₂, RT; (m) NaBH(OAc)3, AcOH, CH₂Cl₂

The absolute stereochemistry at the acetoxy-substituted stereogenic center of 5 is consistent with that predicted by empirical rules for *Pseudomonas cepacia* lipase catalysis at such secondary centers.^{2d,15} Enantiopure intermediate 5 as well as derived enone 7 and diene 8 should prove useful in the synthesis of higher sugars and related polyols. 16

Acknowledgment. This work was supported by grant CHE-9223011 from the National Science Foundation.

References and Notes

- 1. Johnson, C. R.; Adams, J. P.; Bis, S. J.: De Jong, R. L.; Golebiowski, A.; Medich, J. R.; Penning, T. D.; Senanayake, C. H.; Steensma, D. H.; Van Zandt, M. C. *Pure & AppL Chem.* 1992, *64,* 1115.
- 2. (a) Johnson, C. R.; Penning, *T. D. J. Am. Chem. Soc.* 1988, *110,* 4726; (b) Medich, J. R.; Kunnen, K. B.; Johnson, C. R. *Tetrahedron Lett.* 1987, *28,* 4131; (c) Johnson, C. R.; Senanayake, *C. H. J. Org. Chem.* 1989, *54,* 735; (d) Johnson, C. R.; Golebiowski, A.; McGill, T. K.; Steensma, D. H. *Tetrahedron Lett.* 1991, *32,* 2597: (e) Johnson, C. R.; PIe, P. A.; Su, L.; Heeg, M. J.; Adams, J. P. *Synlett* 1992, 388.
- 3. Johnson, C. R.; Sakaguchi, H. *Synlett* **1992**, 813; Sundram, H.; Golebiowski, A.; Johnson, C. *R. Tetrahedron Lett.* 1994, *35,* (in press).
- 4. For examples of new synthetic methodologies developed in the course of this project see: (a) Johnson, C. R.; Adams, J. P.: Braun, M. P.; Scnanayake, C. B.; Wovkulich, P. M.; Uskokovic, *M. R. Tetrahedron Lett.* 1992, *33,* 919; (b) Bakale, R. P.; Johnson, C. R.; Scialdone, M. A. J. *Am. Chem. Soc.* 1990, *112,* 6729; (c) Johnson, C. R.; Golebiowski, A.; Steensma, D, H.; Scialdone, *M. A. J. Org. Chem.* 1993, 58, 7185; (d) Johnson, C. R.; Raheja, *R. K. J. Org. Chem.* 1994, *59,* 2287.
- 5. (a) Johnson, C. R.; Golebiowski, A.: Steensma, D, *H. J. Am. Chem. Soc.* 1992, *114,* 9414; (b) Johnson, C. R.; Adams, J. P.; Collins, M. A J. Chem. Soc. Perkin Trans. 1 1993, 1; (c)

Johnson, C. R.; Golebiowski, A.; Braun, M. P.; Sundram, H. *Tetrahedron Lett.* 1994, *35,* 1833; (d) Johnson, C. R.; Kozak, *J. J. Org. Chem.* 1994, *59,* 2910.

- 6. This part of the synthesis was done in analogy to the previously reported 1,4-cyclohexadiene functionalization (see ref. 2e).
- 7. All syn oxygen products are dominant in additions of singlet oxygen to 6-silyloxy-1,4cycloheptadienes (see ref. 2c, 2d, 5a). For a recent review on singlet oxygen cycloadditions **see:** Clennan, E. L. *Tetrahedron* 1991,47. 1343.
- 8. For a recent review on the use of lipases in the presence of isopropenyl acetate see Wong, C.-H.; Whitesides, G. M. *Enzymes in Synthetic Organic Chemistry;* Pergamon : Oxford, 1994
- 9. Chiral HPLC: CHIRALCEL OB (J. T. Baker); 40% isopropyl alcohol in hexane at 0.5 mL/min; ent-6 13.6 min; 6, 15.5 min. A racemic sample of 6 was prepared from 4.
- 10. Moore, R. E.; Barchi, J. J.; Bartolini, *G. J. Org, Chem.* 1985, *50,* 374. No polarimetric data is given for 3-deoxy-D-n'bo-hexitol.
- 11. Johnson, C.R.; Braun, *M. P. J. Am. Chem. Soc.* 1993, *115,* 11014.
- 12. Gemal, A. L.; Luche, J-L. *J. Am. Chem. Soc.* 1981, *103,* 5454.
- 13, Baillargeon, V. P.; Stille, J. K..L *Am. Chem. Soc.* 1983, *105,* 7176.
- 14, Saksena, A. K.; Mangiaracina, P. *Tetrahedron Lett.* 1983, *24,* 273. For an excelent review on substrate-directable reactions see: Hoveyda, A. H.: Evans, D. A.; Fu, G. C. *Chem. Rev.* 1993, *93,* 1307.
- 15. Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, *L. A. J. Org. Chem.* 1991, *56,* 2656.

16. **Selected Spectral and** Polarimetric Data:

1: mp 99° C; ¹H NMR (CDCl₃) δ : 4.63-4.51 (m, 2H); 4.40-4.31 (m, 2H); 2.28-1.93 (m, 8H); 1.44 (s, 3H); 1.34 (s, 3H); ¹³C NMR (CDCl₃) δ : 107.1, 76.6, 58.0, 31.5, 30.0, 27.7, 25.4. **3: IR** (film) : 1450, 1431, 1395, 1357, 1200, 1157 cm⁻¹; ¹H NMR (CDCl₃) δ : 6.39 (dd, 2H,J = 3.7 Hz, 2.15 Hz); 4.80-4.76 (m, 2H); 4.32-4.23 (m, 2H); 2.56-2.51 (m, 4H); 1.47 (s, 3H); 1.28 (s, 3H); $13C$ NMR (CDCl₃) δ : 130.6, 105.4, 74.7, 73.7, 37.9, 27.4, 23.9. 4: mp 127-128 °C; IR (film) : 3404, 3337, 1645, 1210, 1070, 1024 cm⁻¹; ¹H NMR (CDCl₃) δ : 5.75 (d, 2H, J = 3Hz); 4.41-4.36 $(m, 4H)$; 2.38-2.15 $(m, 6H)$; 1.42 $(s, 3H)$; 1.30 $(s, 3H)$; ¹³C NMR (CDCl₃) δ : 134.1, 102.1, 76.3, 66.4, 40.3, 27.3, 24.4. 5: Oil; $\alpha|D|$ +23.2 (c 1, CHCl3); IR (neat) : 3454, 2978, 1730, 1711, 1366, 1241, 1027 cm-I; 1H NMR (CDCI3) 5:5,76 (ddd, 1H, J = 11.5, 5.5, 1.8 Hz); 5.63 **(ddd,** 1H, J = 11.5, 5.5, 1.8 Hz); 5.29-5.22 (m, I H); 4.59-4.48 (m, 2H); 4.40-4.35 (m, 1H); 2.34-2.07 (m, 5H); 2.06 (s, 3H); 1.40 (s, 3H); 1.32 (s, 3H); 13C NMR (CDCI3) 5: 170.3, 135.5, 129.8, 107.7, 76.9, 76.7, 68.7, 66.9, 41.7, 39.0, 27.4, 24.6, 21.1. 6: mp 49-52 °C; ; [α]D -14.9 (c 1, CHCl₃); IR (cast film) : 1733, 1636, 1366, 1229, 1059, 1016 cm⁻¹; ¹H NMR (CDCl₃) d: 6.12 $(\text{ddd}, \, 1H, \, J=13.3, \, 4.8, \, 1.1 \, \text{Hz})$; 5.97 (d, 1H, J = 13.8 Hz); 5.55-5.48 (m, 1H); 4.52 (ddd, 1H, $v=$ 10.8, 5.3, 3.3 Hz); 4.35 (ddd, 1H, J = 10.7, 5.2, 3.7 Hz); 2.98 (dd, 1H, J = 17.7, 10.8 Hz); 2.73 (dd, 1H, J = 18.2, 3.4 Hz); 2.34 (ddt, 1H, J = 14.6, 3.7, 1.4 Hz); 2.07 (s, 3H); 1.43 (s, 3H); 1.35 $(s, 3H)$; ¹³C NMR (CDCl₃) δ : 201.7, 169.6, 134.9, 131.4, 107.8, 74.5, 73.1, 67.9, 44.4, 32.0, 27.7, 25.5, 20.7. 9 (from cyclooctadiene 8): α |D +0.4, α |A₀₀ +1.6 (c1, CHCl3); 9 (from cyclopentene 12): $\alpha|_D$ +0.4 (c 3.6, CHCl₃), $\alpha|_{400}$ +1.8 (c2.1, CHCl₃); The following spectral data were identical in both cases: IR (neat) : 1742, 1433, 1370, 1235, 1045, 948 cm⁻¹; ¹H NMR $(CDCl₃)$ δ : 5.21-5.28 (m, 3H); 4.28 (dd, 1H, J = 4.7, 3.7 Hz); 4.24 (dd, 1H, J = 4.7, 3.7 Hz); 4.12 (dd, 1H, J = 12.2, 6.1 Hz); 4.03 (dd, 1H, J = 12.2, 6.1 Hz); 2.04 - 2.07 (m, 17H); ¹³C NMR (CDCI3) 5: 170.5, 170.0, 170.2, 71.5, 68.4, 68.3, 64.3, 61.6, 3t.2, 20.9, 20.8, 20.6

(Received in USA 1 August 1994: *revised* 23 *August* 1994; *accepted* 26 *August* 1994)